skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Richardson, Theo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Measured properties of young stellar objects (YSOs) are key tools for research into pre-main-sequence stellar evolution. YSO properties are commonly measured by comparing observed radiation to existing grids of template YSO spectral energy distributions (SEDs) calculated by radiative transfer. These grids are often sampled and constructed using simple models of mass assembly/accretion over time. However, because we do not yet have a complete theory of star formation, the choice of model sets the tracked parameters and range of allowed values. By construction, then, the assumed model limits the measurements that can be made using the grid. Radiative transfer models not constrained by specific accretion histories would enable assessment of a wider range of theories. We present an updated version of the Robitaille set (2017) of YSO SEDs, a collection of models with no assumed evolutionary theory. We outline our newly calculated properties: envelope mass, weighted-average dust temperature, disk stability, and circumstellarAV. We also convolve the SEDs with new filters, including JWST, and provide users the ability to perform additional convolutions. We find a correlation between the average temperature and millimeter-wavelength brightness of optically thin dust in our models and discuss its ramifications for mass measurements of pre- and protostellar cores. We also compare the positions of YSOs of different observational classes and evolutionary stages in IR color space and use our models to quantify the extent to which class and stage may be confused due to observational effects. Our updated models are released to the public. 
    more » « less
  2. ABSTRACT Young stellar objects (YSOs) are the gold standard for tracing star formation in galaxies but have been unobservable beyond the Milky Way and Magellanic Clouds. But that all changed when the JWST was launched, which we use to identify YSOs in the Local Group galaxy M33, marking the first time that individual YSOs have been identified at these large distances. We present Mid-Infrared Instrument (MIRI) imaging mosaics at 5.6 and 21 $$\mu$$m that cover a significant portion of one of M33’s spiral arms that has existing panchromatic imaging from the Hubble Space Telescope and deep Atacama Large Millimeter/submillimeter Array CO measurements. Using these MIRI and Hubble Space Telescope images, we identify point sources using the new dolphot MIRI module. We identify 793 candidate YSOs from cuts based on colour, proximity to giant molecular clouds (GMCs), and visual inspection. Similar to Milky Way GMCs, we find that higher mass GMCs contain more YSOs and YSO emission, which further show YSOs identify star formation better than most tracers that cannot capture this relationship at cloud scales. We find evidence of enhanced star formation efficiency in the southern spiral arm by comparing the YSOs to the molecular gas mass. 
    more » « less